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We consider a problem of a classical gas relaxing towards Maxwellian distribution function
in the case when the initial nonequilibrium distribution function depends only on the modu-
lus of velocity. The quintuple Boltzmann collision integral is reduced to a double integral
with the subsequent possibility of application of numerical methods to the solution of the
problem. Simplification of the collision integral is also carried out for the case of a mixture
of gases.

Numerical results are presented in graphical form, showing the behavior of the distribu-
tion function with time.

Let us consider a homogeneous quiescent gas composed of molecules, which we assume
to be perfectly rigid smooth spheres of diameter o and mass m.

The state of such a gas can be described in terms of its distribution function f(s, 4, v,
w) which is a function of time ¢ and components u, v and w of velocity of the molecules. In
this case the Boltzmann equation for f will be
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and we shall now state the Cauchy’s problem for it. When ¢ = 0, we have a given initial dis-
tribution function f= f{¢ =0, (u2 + v2+ w2)A) depending only on the modulus of velocity
and different from the Maxwellian distribution function.

It is necessary to find a distribution function satisfying (1) when ¢ > 0 and coinciding
with the initial function when ¢t = 0.

We shall seek a solution of this problem in the form

[=1(t V402 40
Inserting it into (1) and adopting spherical coordinates given in the velocity space by
u =V cos, v = V siny, cos y, w = Vsinj sin g

u, = Vycosy,, vy =V;siny;cosy, wr=V,siny,siny,
we obtain
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To simplify the collision term further, we shall have to use the following identity, valid

for any single-valued integrable function F
it n
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To confirm its validity, we shall write its left-hand side in the form
S S Flcos (n, my), o, B] d2 (4)
T

where 3 is a unit radius sphere, integration being carried out over its surface; B is a fixed
unit vector with origin at the center of the sphere and with direction cosines given by (cos
@, sin a cos B, sin asin 8); N, is a unit vector variable under integration, with the origin
at the center of the sphere. It supports an elementary surface d% and its direction cosines
are (cosa,, sina, cosf3,, sin a, sin B,).

We see from (41) that the value of the integral is coordinate independent. We can there-
fore direct the coordinate axis from which @ 4is counted, along the fixed vectorm, and this
yields the integral (4) in the form of the right-hand side of (3).

Let us now consider separately the integrals in 1,01 and ), appearing in the collision term
of (2). We can simplify it using the identity (3) in which ¢/, and ¥, replace a, and ;. Re-
peating it for the integrals in ! and ‘¢, we obtain the Boltzmann equation in the form
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Integration in the second part of the collision integral can be performed with respect to
0 and 1/, and the resulting expression is

— 2n3%2f (¢, V) S f(t, =) v+ :1:)3—3—‘,] V—zp z dz

Here the integration variable ¥ ?s denoted by x.

We shall now introduce new variables of integration into the first part of the collision in-
tegral, putting _

z= Y Visin®0F V,2 cos? Y1, y= VVisin?¢, 4 Vicos?0, g=Vicosp;—Vcos0

This substitution makes integration with respect to g possible, thus converting a triple
integral into a double integral. The Boltzmann equation (5) in its final form is
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Thus, Cauchy’s problem posed for the Boltzmann equation under the assumption that the
initial distribution function is a function of the velocity modulus only, has becomed a Cau-
chy’s problem for (6).

Recently, the problem of temperature relaxation in two-temperature mixtures of classical
gases | 1] received some attention.

Assuming that initial distribution functions of any gas depend only on the velocity modu-
lus, we can also carry out a similar simplification of the collision integral in this case.
Suppose that the mixture of gases consists of two types of molecules which we shall ass-
ume to be perfectly rigid, smooth spheres of respective diameters ¢, and 0, and masses m,
and m,.

Wezshall also assume, for definiteness, that m;  m,. Respective distribution functions
will be f(¢, ¢,) and F(¢t, c,) where €; and €, are velocities of respective molecules. The
system of Boitzmann equations [2] will then be given by
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where I, and/,, have the form of the right-hand side of (1) in which we replace o with o,
and 0, and f(s, c3 with f(¢, €;) and F(¢, ¢,).

We shall seek a solution of (7) in the ?onn f=fG, |cy|) and F(s, |c,|). Inserting these
functions into (7) and performing transformations analogous to those made for Eq. (1), we
arrive at the following system:

a/ (tv V)/at = Ill (fv f) + Ila (f1 F)v oF (ti V)/at = Izl (F’ f) + 122 (Fv F)

Here ¥ denotes both the variable |¢,| in f and |C,| in F, Expression I,,(f, /) denotes the
right<hand side of (6) in which o is repllaced with 04. I, (F, F) denotes die right<hand side
of (6) with o replaced with 0, and f replaced with I'J
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Only double integrals are present in the above system and this reduces appreciably the
amount of computation necessary when a computer is used to obtain a solution,
Next we shall investigate a numerical method of solution of Cauchy's problem for Eq.
6. L
Let us introduce the dimensionless distribution function f* which is to be determined
and dimensionless variables ¢ “and V *, all defined by

Vm , 3kT 4 V2 m ’/’,
'= s Ykl V= m Ve =3 "(2::1:1')’

where n and T are the density and termperature of the gas.

The factor preceding ¢’ is equal to the mean time elapsing between two consecutive
collosions of a molecule, while the RMS velocity is taken as a characteristic velocity.

Eq. {6) can be transformed into dimensionless variables by supplementing all magnitudes
with a prime and omitting the factor 27202 in its right-hand side. The initial distribution
function shall correspond to the following problem. Let us suppose that at ¢ = 0 we have a
homogeneous quiescent gas. One half of its molecules exhibits Maxwellian distribution with
the temperature T, = T/2, while the other half exhibits a Maxwellian distribution with tem-
perature T, = 37/2 where T is the temperature of the whole gas.

Let # be the gas density. Then the initial distribution function is

n m \7 — mV?2 n m /2 — mV*?
fo= T(zm::r,) exp gy + T(z:mr,) eXP T2kT,
which in dimensionless form becomes
fo = (9/4) exp (— 3V + (V3/4) exp (— V'?) (8}

As t”» 0o, the solution tends to the Maxwellian distribution function, which in its dim-

ensionless form can be written as

f =@V exp (—3v2) ©)

Now denoting the right-hand side of {6), in its dimensionless form by I{f’, f*), we can

write it as
of 1ot =1 (f, )

The first time interval allowing the departure from the initial distribution function fo"(V")
was obtained from the Euler’s method f/(At”, ¥V )= fo'(V o re 1{fy A fo') At where At” de-
notes the interval of time. Further steps were computed using a modified Euler’'s formula

Pt VY= L VYT (8, V), 1 (8, V282, k>t
W[y ) Doubl.e integrals were ce}lcﬁlated by repeated integra-
£ \\ tion of single integrals, which were computed using Simpe

\ oo son’s rule. Figs. 1 and 2 show the results obtained on the
/’ \\/ computer *‘Strela’’ at the Computer Center of the Acad. of
.
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\X Each curve of Fig. 1 shows the relationship between

the function ¥’ 2f7(¢", ¥} and the velocity modulus. The

number accompanying each curve denotes the instant to

which the function corresponds. Function (8) was used as

: ¥’ an initial distribution function. Fig. 2 shows

0 28 6 24 the plots of f*(¢t*, 'V') corresponding to the fol-
Fig. 1 lowing instants: t "= 0, 0.5, 1.0, 3.5. The curve
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labelled t“= oo corresponds to function (9).
We see that at ¢’= 3.5, the solution resembles a Maxwellian distribution function. How-

e ever, as it approaches the equilibrium value, df’/3¢’ decreases
7 and the limiting process of attaining Maxwellian distribution be-
> comes very slow. To overcome this difficulty, we must use the

asymptotic of the distribution function as t”- . We can, e.g.
use the asymptotic of a linearized Boltzmann equation given in
(3], An approximate modelling equation is often used [4? to des-
\ oo cribe the motion of a rarefied gas. The latter, written in dimen-
12 £=35 sionless variables used in Boltzmann equation, has the form
\ ' of 1 0 = (*/y) [/, V2) exp (—3V2/2) — f]

Its initial Cauchy’s problem has the following solution (]0)
= fy'(V') exp(— 4¢'/5)4-{1 — exp(—4¢'/5))(%/ V 2)exp(— 3V'%/2)
where f,(V’) is the initial distribution function. Fig. 3 gives a
08 comparison of solution of a modelling equation with that of Bol-
. tzmann equation by showing the plots of ¥V“2f"(¢/, V”) at the ina-_
tant t’= 1. The distribution function marked t“= 0 on Fig. 2 was

taken as an initial function. The graph shows that at higher val -
“ ues of ¥, the solution of the modelling equation exceeds the

/
a5 4
0

value of the distribution function several times.
=85 This leads to an excess in the value of mo-
/ ments of order higher than that of the density
and temperature, computed according to the dis-
tribution function (10),
Another characteristic feature of solution
yr (10) is that the distribution function is time in-
1 dependent at the points ¥, ” at which the initial
0 T ¢ (distribution fl_x'nctioh»fo'(f") is equal to the Max-
Fig. 2 - welli an distribution function (9/4(2)*) exp(— 3

04
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v’3/2).
In the case of the Boltzmann equation, computations show that the distribution function,
which is its solution, changes its value with time.
0STv2e” The following two assertions are useful for computations.
LV 1°. If the initial distribution function fo(V) is bounded,
(o] o] )
\vemar, (vamar
° 0
\ converv and fo(V) has finite discontinuities at isolated

points V; . The solutions of the Boltzmann equation where
\ the initial distribution function is also fo(V), will also ex-

a3

hibit the same discontinuities and they will disappear only
when ¢ = oo,

/) 2°, If a bounded and continuous initial function fo(V) is
\ such that integrals
al /) I\ [ee] Sy
I\ S V2o (V) dV S Vo V)V
<w. V 0 0
0 ; 7 converge and a derivative dfg(V)/3V exists

Fig. 3 which may undergo finite discontinuities at
g isolated points, then the derivative of the
distribution function df(¢, ¥)/dV will also exhibit discontinuities at these points and they
will only disappear when ¢ = oo,
To prove the first assertion we shall write Eq. (6) with initial conditions at ¢ = 0 taken
into account, in an integral form

t t t
_ — e, - an
VY= fo (V)exp[ § L@, V) dr] + § G(v,V) exp[ S L(s,V) ds] dv. (1

T
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where .
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In [5] it was shown that under the above assertions there exists such a constant M, that
the inequality f(t, ¥) <M is valid for the solution of the Boltzmann equation at any ¢ and V.
Since an indefinite integral of a bounded function is a continuous function, then

t t t
exp [— S L(x, V)dr] , S G(1,V)exp [— S L(s,V) ds] dt
0 0 T
will be continuous in ¢ and V.

Consequently, the existence of discontinuities in fo(V) implies the existence of discon-
tinuities at the same points ¥, in f(¢, V).

The integral representation (11) shows that its first term tends to zero with increasing
time, Indeed, from the H-Theorem it follows that f tends to the Maxwellian distribution
function as ¢ » oo, therefore L(¢, ¥)+ L{so, V) as ¢ -+ oo, where L (oo, V) is larger than some
positive value at any V. Hence

s

SL(t,V)dr—» 400 as t—o0

°
from which it follows that the first term of (11) vanishes.

Proof of the second assertion is as follows. Under the assomption made in 2°, the Carle-
man Theorem I ([5], part 1, Ch. 2, par. 1) stating that f(t, V) is a bounded, uniform and
continuous function of V, is valid.

Differentiating (11) with respect to ¥ and following the argument used in the proof of 1°
together with the continuity of f(¢, ¥) in V, we arrive at the conclusion that df/3V will have
discontinuities at the same points as 3f/dV, and that these discontinuities will, again,
disappear as ¢t + .
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