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We consider a problem of a classical gas relaxing towards Maxwellian distribution function 
in the case when the initial nonequilibrium distribution function depends only on the modu- 
lus of velocity. The quintuple Boltxmann collision integral is reduced to a double integral 
with the subsequent possibility of application of numerical methods to the solution of the 
problem. Simplificatigl of the collision integral is also carried out for the case of a mixture 
o-f gases. 

Numerical results are presented in graphical form, showing the behavior of the distribu- 
tion function with time. 

Let us consider a homogeneous quiescent gas composed of molecules, which we assume 
to be perfectly rigid smooth spheres of diameter cr and mass m. 

The state of such a gas can be described in terms of its distribution function f(t, a, v, 
wl which is a function of time t and components a, u and w of velocity of the molecules. In 
this case the Boltzmann equation for f will be 
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VI) = vl - mq, wI’ = wl - nq, q = 1 ( u1 - u) + m (vl - 2~) + n (WI - w) 

1 = case, m = sin 0 cos(p, n = sin 8 sin cp 

and we shall now state the Cauchy’s problem for it. When t = 0, we have a given initial dis- 
tribotion function f= f(r = 0, (~2 + u2+ 1~21%) depending only on the modulus of velocity 
and different from the Maxwellian distribution function. 

It is necessary to find a distribution function satisfying (11 when t > 0 and coinciding 
with the initial function when t = 0. 

We shall seek a solution of this problem in the form 

f = f (t, 1/u* + u2 + w”) 
Inserting it into (1) aud adopting spherical coordinates given in the velocity space by 

u = v cosg, v = Vsin$lcosX, w 3VsingsinX 

u1 = v, cosq,,, vI = V, sin*, cos XI, w1 = VI sing, sin x, 
we obtain 
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- j (t, V) f (t, VI)] I q 1 VI* sin 0 sin $1 d3 dW d$t dxr dV1 (2) 

pI = VI2 - 2Vl (co9 $I co9 8 + sin $I co9 x1 sin 8 co9 cp + sin $I sin X1 sin 0 sin cp)q + qa 

p=_VJ+2V (cos~cos8+sin~cos~sin0coscp+sin~sin~sin~sincp)q+qa 

q = v, (~09 h cos e + sin 9jI co9 x1 sin e co9 fp + sin *I sin x1 sin 8 sin cp) - V (eos 9 co.3 e + 

+sin*cosXsinf3coscp+singsinxsin8sinq~) 

To simplify the collision term further, we shall have to use the following identity, valid 
for any single-valued integrable function F 
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To confirm its validity, we shall write its left-hand sidle in the form 

ss 
F [cos (n, nl), a, PI dZ 
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_ 
where 2 is a unit radius sphere, integration being carried out over its surface; ,t~ is a fixed 
unit vector with origin at the center of the sphere and with direction cosines given by (cos 
U, sin ucos @, sin asin B); it is a unit vector variable under integration, with the origin 
at the center of the sphere. It supports an elementary surface ds and its direction cosines 
are (cosUt, sina cosflt, sin U, sin /3,). 

We see from (4 that the value of the integral is coordinate independent. We can there- 3 
fore direct the coordinate axis from which ~+,is counted, along the fixed vector II, and this 
yields the integral (4) in the form of the right-hand side of (3). 

Let us now consider separately the integrals in $‘r and xt appearing in the collision term 
of (2). We can simplify it usin 

8 
the identity (3) in whrch $t and x1 replace U, and pt. Re- 

peating it for the integrals in and 9, we obtain the Boltzmann equation in the form 
mnrr __ . . 

g zx 2Jt2l9 sss [f (t, 1/E) f (t, I/i;, - f (r, V) f (6 VI)] ( q I V? sin tl sin gldtJ dgl dV1 
0 00 

pl = VI2 sin2 ql + V2 co.9 0, p = V* sjna 0 + Via cosa $1, q = Vl CO8 $1- v cos e (5) 

Inte ration in the second part of the collision integral can be performed with respect to 
8 and $t and the resulting expression is 
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Here the integration variable Vl is denoted by z. 
We shall now introduce new variables of integration into the first part of the collision in- 

tegral, putting 

x = )/va sina 8 + via COST I&, y = ‘r/ vlrsina \pl + Vacosa 0, q = v1 cos lpl - v ~0~ e 
This substitution makes integration wit6 respect to q possible, thus converting a triple 

integral into a double integral. The Boltzmann equation (5) in its final form is 

al (4 V) = 2naa.J v 

V 
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Thus, Canchy’s problem posed for the Boltzmann equation under the assumption that the 
initial distribution function is a function of the velocity modulus only, has becomed a Cau- 
thy’s problem for (6). 

Recently, the problem of temperature relaxation in two-temperature mixtures of classical 
gases [ 11 received some attention. 

Assuming that initial distribution functions of any gas depend only on the velocity modu- 
lus, we can also carry out a similar simpli’fication of the collision integral in this case. 
Suppose that the mixture of gases consists of two types of molecules which we shall ass- 
ume to be perfectly rigid, smooth spheres of respective diameters ot and u2 and masses mt 
and mz. 

We shall also assume, for definiteness, that ml 4 mt. Respective distribution functions 

will be j(t, c ) and F(t, c,) where Cl and Cz are velocities of respective molecules. The 
system of Bo\txmann equations 121 will then be given by 

- f (t. cl) F (6 CZ)] 1 (&l-k) I sin 13 de 4 dca 

at =z221F(~,ca,1+(~ja~~~s’s”T [f(t,cl’)F(t,ca’)_ 
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- F (4 ~1) f (4 cl)] 1 (&l*k) I sin 0 de dq dcl 

q’=l&- ms k (gsl.k), Cl’ = Cl + a2 k (&l-k) 
g,,=ca--1, k = (ccs 8, sin 0 cos cp, sin 0 sin cp) 

where Zt t and Zz have the form of the right-hand side of (1) in which we replace B with ut 
and ap and fit, d with f(:, Cl) and F(t, C 1. 

We shall seek a solution of (7) in the lorm f= f(t, (~~1) and F(t, 1~~1). Inserting these 
functions into (7) and performing transformations analogous to those made for Eq. (l), we 
arrive at the followfng system: 

al 09 V) Z at = Z, (f* n + 112 (f, 0, b’F (t, V/at = 12, (F, n + 122 (F, F) 

Here Y denotes both the variable lCfl in f and 1~~1 in F. Expression bt(j, fi denotes the 
right-hand side of (6) in which o is rep aced with 9 
of (6) with o replaced with q and f replaced with d 

. I, 2 (F, F) denotes e right-hand side 
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- (c+)’ 2n’F (t, V) r f (r, y) 
(~+Y)*--Iv-YY3 YdY 
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Y1=‘/2l(V--r)+(Vfx)ml/m~], ya=1/aI(V+x)+m~(P-xs)/m21 
Only double integrals are present in the above system and this reduces appreciably the 

amount of computation necessary when a computer is used to obtain a solution. 
Next we shall investigate a numerical method of solution of Cauchy’s problem for Eq. 

Let us introduce the dimensionless distribution function f’ which is to be determined 
and dimensionless variables t ‘ and v ‘, all defined by 

t= 
-Crm 

4na2 VZZ “’ 
v= 

3kT 
7 V’, 

where n and T are the density and termperature of the gas. 
The factor preceding t’ is equal to the mean time elapsing between two consecutive 

collosions of a molecule, while the RMS velocity is taken as a characteristic velocity. 
Eq. (6) can be transformed into dimensionless variables by supplementing all magnitudes 

with a prime and omitting the factor 2n2u2 in its right-hand side. The initial distribution 
function shall correspond to the following problem. Let us suppose that at t = 0 we have a 
homogeneous quiescent gas. One half of its molecules exhibits Maxwellian distribution with 
the temperature T = T/Z, while the other half exhibits a Maxwellian distribution with tem- 
perature T1 = 3Tf2 h w ere T is the temperature of the whole gas. 

Let n be the gas density. Then the initial distribution function is 

n m 

i ) 

‘1% - m&Q n m % _ mVZ 

f” = -%- 2nkTl exi’ 2kT1 + -?i- ZnkTs; ( ) exp 2kTz 

which in dimensionless form becomes 

f(= (9/4) exp (- 3V) + (1/S/4) exp (- V) (8) 

As r’+ m, the solution tends to the Maxwellian distribution function, which in its dim- 
ensionless form can be,written as 

f’ = (Q/,J!‘z) exp (- 3W2) (9) 

Now denoting the right-hand side of (a), in its dimensionless form by IV’, f’), we can 
write it as 

was obtained from the Euler’s method f’(fr’, V ‘) = fo’(V ‘) + i(f,‘, fo’) ht’where bt 
The first time interval allowing the de arture from the initial distribution function fo’(V’) 

de- 

notes the interval of time. Further steps were computed using a modified Euler’s formula 

f’ (Q+;, v’) = f’&, v’) + I [f’ (tk‘, V’), f’ (tkf, U1 2At’, k >, 1 

a4 Double integrals were calctilated by repeated integra- 
tion of single integrals, which were computed using Simp 
son’s rule. Figs. 1 and 2 show the results obtained on the 

“Strela” at the Computer Center of the Acad. of 
Sciences SSSR. 
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labelled t’= 00 corresponds to function (9). 
We sea that at r’= 3.5, the solution resembles a Maxwellian distribution function. How- 

ever, as it approaches the equilibrium value, a j’/a t ’ decreases 

16 and the limiting process of attaining Maxwellian distribution be- 
. comes very slow. To overcome this difficulty, we must use the 

asymptotic of the distrrbution function as t’+ -. We can, e.g. 
use the asymptotic of a linearized Boltzmann equation 
[3]. An approximate modelling equation is often used [4 t.o des- P 

iven in 

tribe the motion of a rarefied gas. The latter, written in dimen- 

12 sionlesa variables used in Boltzmann equation, has the iorm 

af’l at' - (Ys) I(V4 l/Z) exp (- 3V’a / 2) - f’l 
Its initial Cauchy’s problem has the following solution (10) 

:P - f,‘(vl) exP(- 4t’/fl)iJll - exp(-44t’/5)](a/,*j%)exp(- 3V’*/2) 

Q4 

where fo’cV’) is the initial distribution function. Fig. 3 gives a 
comparison of solution of a modelling equation with that of Bol- 
tzmann equation by showing the plots of Vt2f’(t’, V’) at the in-- 
tant t’= 1. The distribution function marked t’= 0 on Fig. 2 was 
taken as an initial function. Tho graph shows that at higher val- 
ues of V’, the solution of the modelling equation exceeds the 
value of the distribution function several times. 

This leads to an excess in the value of mo- 
ments of order higher than that of the density 
and temperature, computed according to the dis- 
tribution function (10). 

Fig. 2 

V’2/2). 

Another characteristic feature of solution 
(10) is that the distribution function is time in- 
dependent at the points V ’ at which the initial 
distribution ftinctioii.fo’(~‘) is equal to the Max- 
welli an distribution function (9/4(2)%) exp(- 3 

In the case of the Boltzmann equation, computations show that the distribution function, 
which is its solution, changes its value with time. 

The following two assertions are useful for computations. 
lo. If the initial distribution function f,(V) is bounded, 

OD 00 

Fig. 3 

s V2jo(V) fl, s V’fo (V) dV 
0 0 

conver e and f,(V) has finite discontinuities at isolated 
points i . The solutions of the Boltzmsnn equation where & 
the initial distribution function is also jo(V), will also ex- 
hibit the same discontinuities and they will disappear only 
when t = m. 

29 If a bounded and continuous initial function fo(V) is 
such that integrals 

m 03 

s VVo (VI dV s V’fo (V@V 

conver:e and a derivative’dfo(V)/aV exists 
which may undergo finite discontinuities at 
isolated points, then the derivative of the 

distribution function arc:, V)/lW will also exhibit discontinuities at these points and they 
will only disappear when t = mo. 

To prove the first assertion we shall write Eq. (6) with initial conditions at t = 0 taken 
into account, in an integral form 

/(LV)=fo(V)exp[-_ L(T,V)dT]i- 5 G(r,V)exp[-_ L(s,V)d.s]ds (11) 
0 0 5 
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where 
03 

L (t, V) = 2nW 
s 

f (t, 2) 
(F +z)a-lF---II’ zdz 
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G (t, V) = 2nW 
ss 

f(44f(4Y) vz~+Y~-V~4~dY.dz 
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t 

V co 

+ 2n*az 
s 

f (t, z)? dx f (t, 2) 2xdx + 2nW 

0 

In [S] it was shown that under the above assertions there exists such a constant hf. that 
the inequality f(t, V) <M is valid for the solution of the Boltzmann equation at any L and F. 
Since an indefinite integral of a bounded function is a continuous function, then 

t 
exp - 

[ s 
L (z, V)dT 1, 5 G(r,F)exp[-- 5 L(s,V)ds]dr 

will be continuous in t Ld Vi 
0 7 

Consequently, the existence of discontinuities in fo(V) implies the existence of discon- 
tinuities at the same points V, in f(t. VI. 

The integral representation (11) shows that its first term tends to zero with increasing 
time. Indeed, from the H-Theorem it follows that f tends to the Maxwellian distribution 
function as t + 00, therefore t(t, V) + t(w, V) as t + -, where L(-, F) is larger than some 
positive value at any V. Hence 

r 

s 
L(z,V)dr-+ += as t-*oe 

0 
from which it follows that the first-term of (11) vanishes. 

Proof of the second assertion is as follows. Under the assumption made in Z”, the Carle- 
man Theorem Ill ([S], part 1, Ch. 2, par. 1) stating that f(t, V) is a bounded, uniform and 
continuous function of V, is valid. 

Differentiating (11) with respect to V and following the argument used in the proof of lo 
together with the continuity of f(r, V) in V, we arrive at the conclusion that af/&’ will have 
discontinuities at the same points as c&/W, and that these discontinuities will, again, 
disappear as t + 00. 
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